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ABSTRACT

An experimental investigation was conducted to determine the causes of hot gas
ingestion of engine inlets in STOVL and V/STOL aircraft in ground effect. Marker
nephelometry was used to establish the interactions between the jets, forward velocity,
and ground for a typical aircraft model configuration. The aircraft test model consisted
of a two inlet configuration with four low subsonic velocity jets impacting vertically on
a flat plate. The vertical distance between the plate and model under-surface was
adjustable, and a wind tunnel provided forward air velocities from O to 0.1 times the jet
velocity to simulate landing into a wind. Single frame pictures of the smoke
concentration distribution in the flowfield revealed several vortical features in the
interaction region, which were affected variously by the distance between the ground
plane and model, the forward wind velocity, and the inlet suction. Some of these vortical
features, such as the ground vortex, have been seen before in experiments using single
jets. Other vortical features in the flowfield, such as the forward vortex pair, have not
been seen before. Frame-averaged experimental smoke concentration profiles compared
favorably with numerical time-averaged predictions of temperature distribution carried out
at the University of Illinois. However, such predictions did not seem to reveal some

aspects of the vortical flow features which should affect instantaneous distortion into the

engine inlet.
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1. INTRODUCTION

Research investigating V/STOL and STOVL concepts has been undertaken since
1954, with‘ the first experimental VTOL aircraft, the Lockheed XFV-1. While this aircraft
was unsuccessful, numerous experimental aircraft concepts have been studied and tested
since then. Only a few aircraft, such as the Harrier, have been actually produced.

V/STOL and STOVL aircraft offer several advantages over both helicopters and
conventional aircraft, Unlike conventional aircraft, VTOL and STOVL sircraft take off
and land vertically or in very short distances, allowing shorter runways to be used.
VTOL and STOVL aircraft also are able to fly much faster than conventional helicopters.

While simple in concept, most V/STOL and STOVL aircraft configurations are
extremely difficult to design. A large number of concepts have been tested, but only a
few have been successful. The Harrier uses vectored thrust, which allows the aircraft
to take off and land vertically by rotating the jet nozzles from horizontal to vertical. The
Soviet YAK-38 uses a hybrid vectored thrust/liftjet to take off and land vertically by
using a liftjet located behind the cockpit to provide some of the vertical thrust necessary.
The V-22 Osprey uses a tilt-rotor to convert from a helicopter-like hover to horizontal
flight. The C-17, a STOL aircraft, uses deflected thrust to land on short runways.

One of the more important considerations in the design and operation of V/STOL
and STOVL aircraft in ground effect is the ingestion of hot exhaust gasses into the engine
inlets. Such ingestion leads to a time varying rise in inlet temperature in addition to
velocity and stagnation pressure distortion in the inlet flow. This temperature rise

decreases engine efficiency and performance, and may cause compressor stall in the



engine. Ingestion is an extremely complex process affected by (a) the aircraft
configuration, including the inlet and nozzle design and location, (b) the engine
performance characteristics, (c) the altitude of the aircraft from the ground, (d) the attitude
of the aircraft, () the velocity of the aircraft, and (f) the wind direction and velocity
relative to the aircraft. The engine exhaust jet is turbulent, hot, and often at high Mach
numbers due to choking and underexpansion within the nozzle. Coherent vortical
structures can be expected in the jet due to turbulence. The temperature gives rise to
buoyancy effects. When the jet is supersonic, Mach waves appear in the jet and at
ground interaction. The jet interaction with the ground causes the jet to spread, which
can become further complicated when more than one jet is employed. The formation of
a fountain between multiple jets is well known. During forward flight of subh an aircraft
in ground effect, a relative wind becomes established. Both inviscid and viscous
interactions between the jet spread and the forward wind velocity are of great importance.
Inlet suction is in the nature of a complicated sink in the flow and the flowfield is
therefore affecied by the §ucﬁon.

One of the principal questions in hot gas ingestion concerns the time varying
distortion in the flow and thermal fields at the inlet face. It is of considerable interest to
establish the manner in which instantaneous distortion varies during approach of a
V/STOL aircraft to a landing ground. One approach to addressing the problem is to
examine if there are any discernable characteristic features in the flow interaction region
beneath the aircraft and further, if there is a pattern to changes in 'such characteristic
features as the aircraft descends as a function of time. This has been one of the main
motivations in the current investigation.

A second motivation for the current experiment at Purdue University has been to
provide experimental data for comparison with numerical predictions. In a concurrent

investigation done by Tafti and Vanka [52] at the University of Illinois, an investigation



has been carried out on predicting the interactive flowfield for the same model
configuration used in this experiment. It was therefore possible to compare numerical
predictions with experimental results. The calculations are based on time-averaged and
Reynolds-averaged equations of motion.

It was felt that a four-poster configuration with two symmetrically located inlets
provided an opportunity for examining a number of flow features in the interaction region
that would be of interest from the point of view of practical V/STOL or STOVL aircraft.
It also provided a reasonably E:omplicated configuration to examine prediction capability.

The three main geometric parameters in this experiment were H, the model height
above the ground plane, D, the jet diameter, and H,, the inlet height above the ground.
The main velocity parameters are U, the free stream velocity, and V), the jet velocity.
The scaling parameters, although given in terms of D, and V), are essentially unknown.

In the experiments, a non-intrusive teéhnique, marker nephelometry, was chosen
to determine the flowfield, qualitatively and also quantitatively, in the interaction region.
Based on the visualization of the smoke concentration field, one could obtain the flow
interactions. At the same time, the concentration field is analogous to the temperature
field provided the concentration and the temperature are both in the nature of a marker,
neither introducing density nor transport differences in the flowfield. On this basis, the
concentration field determined in the experiments became available for comparison with
numerical predictions of the temperature field done by the University of Illinois.

The flow velocities, both of the jets and of the forward wind, have small subsonic
values in the current experiments. Compressibility effects are therefore entirely
eliminated. At the same time, it may be worth pointing out that, although the ratio of jet
to forward wind velocities is typical of ground effect situations, the absolute velocity of
the jet is too small for direct comparison of observed flowfield interactions with those

found in practice. Nevertheless, it is hoped that the nature of flow interactions may be



adequately representative of those occurring in actual aircraft operations.
In the following, details of the experiments and the data obtained are presented
along with (a) various observations on the structure of the flow interaction region and (b)

some typical comparisons between experimental data and predictions.

1.1 Vortical Suu s in
The formation of various vortical structures in the flowfield is one of the most
noticeable features. In particular, three types of vortex structures may be identified: (i)
_the horseshoe ground vortex, (ii) the forward vortex pair, (iii) the vortices associated with
the interaction between the fountain and the jets, and (iv) the ground vortex associated
with the downstream pair of jets. Further remarks will be made on the inlet interaction;

meanwhile, the three types of vortex structures may be discussed as follows.

1.1.1 The Ground Vortex
The horseshoe ground vortex is shown in figure 1.1. It forms in the ground plane,
and occurs in the region where boundary layer flow produced by the jets impacting on
the ground plane meets the free stream flow. It has the features of a horse-shoe vortex,
although it will be split by the forward motion of the flow emanating from the inner flow

region between the pair of forward jets.

1.1.2 The Forward Vortex Pair
The forward vortex pair is also shown in figure 1.1. Each of the two counter-
rotating vortices in the forward vortex 'pair are anchored to the ground plane, generally
with their axes oriented normal to the ground plane. The forward vortex pair is located
in the stagnation region where the flow moving outward from between the two forward
jets and the free stream flow meet. The unsteady nature of the forward vortex pair makes

it difficult to determine the various factors contributing to it’s formation.



1.1.3 Vortices Produced by Jet-Fountain Interactions
The third major feature visible in the flowfield is a pair of counter-rotating
vortices between a side pair of jets and the fountain, as shown in figure 1.2. At high
velocity ratos, only the downstream vortex seems to be formed. This» feature propagates
outward from the region between the jets crosswise into the free stream flow. In this
region, only the downstream vortex is visible and acts similar to a ground vortex

associated with the downstream (rear) pair of jets.

1.1.4 Second Ground Vortex

The second ground vortex is associated with the downstream pair of jets, and
appears to arise due to the fountain upwash in the inner flow region, as stated above. At
low velocity ratios and low model heights, the second ground vortex does not appear in
the inner flow region. Instead, the vortex structures described in section 1.1.3 appear.
At high velocity ratios and model heights, the second ground vortex does appear in the
inner flow region, since the forward wind velocity can now affect the inner flowfield
region. The second ground vortex nearly always appears in the outer flow region, and
1s seen in numerical as well as experimental results. The second ground vortex is shown

in figure 1.1.
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2. LITERATURE REVIEW

A large amount of research has been done in the past to investigate the flowfield
around V/STOL and STOVL aircraft in ground effect. This area of the flight regime is
by far the most complex and difficult part to operate in and design for, since the V/STOL
aircraft is generally hovering or in transion. This in itself generates complex
aerodynamic forces, which make the aircraft difficult to control. Stewart and Kuhn [51]
have investigated several different configurations to determine some of the acrodynamic
forces involved in V/STOL aircraft operations in ground effect. Kuhn [33] has also
developed empirical models for predicting the acrodynamic forces and moments felt by
V/STOL aircraft. They have found that aircraft lift is lost in ground effect due to
entrainment by the jets and wall jet, and ground vortex suction. In addition, lift in ground
effect may be increased by flow from the fountain impinging on the aircraft undersurface.
The aerodynamic pitching moment is also affected by these flow features. All these flow
features are highly dependent on the aircraft geometry, including the number, size, and
placement of the jets, wings, and fuselage. As such, it is difficult to get more than an
approximation of aerodynamic forces on the aircraft using empirical models. They have
also documented, in multple-jet configurations, the existence of stagnation lines at the
ground plane, where wall jets from opposing jets meet, and are turned upwards to form
part of the fountain. Kotansky [29] has also documented these features, and has
developed some empirical equations for calculating fountain strength, and the location of
stagnation lines, for multiple-jet configurations. Hall and Rogers [25] have documented

recirculating flows for two jet experiments. Two recirculation regions between the



fountain and jets were observed. These two recirculation regions were caused by fountain
flow being entrained by the two jets.

An important factor in STOVL and V/STOL aircraft design, and the main focus
of this thesis, is the reingestion of hot engine exhaust back into the inlets, which can lead
to a large loss in thrust, and possibly compressor stall. Schwantez [45] has documented
a one percent loss in thrust for every two degree rise in inlet temperature for some aircraft
configurations. Kuhn and Eshlemann [34] also mention this problem, along with the other
flow features mentioned above. Hammond and McLemore [26] have investigated hot gas
ingestion for a number of configurations using large-scale models.

Since the flow structure around the aircraft is configuration dependent, a large
amount of research has been conducted in order to understand the flow of hot exhaust
gasses around experimental V/STOL aircraft and small scale V/STOL aircraft models in
ground effect. Aulehla and Kissel [5] have dbcumented some of the acrodynamic forces
and problems with the VJ-101C, a tlt-jet supersonic V/STOL fighter concept. Weber
[56] has investigated a lift plus lift cruise concept, by measuring the unsteady inlet
temperature at various forward wind speeds. Barrack [7] has examined the effects of hot
gas ingestion on the performance of lift jets in ground effect at low forward speeds for
three large-scale models using different lift jet configurations in the 40- by 80-foot wind
tunnel at Ames Research Center. Sherreib [48] has investigated a civil V/STOL wransport
using two, three, and four jets.

Another approach used in investigating the flowfield around V/STOL aircraft is
to look at the characteristics of a simple jet system, since the flowfield of complex
geometries is very difficult to investigate, due to its inherent complexity and unsteadiness.
Detailed experimental investigations have been conducted on single jets in a crossflow
impinging on flat plates by Shayesteh et. al. [47]. Both Nosseir {41] and Donaldson and

Snedecker [18],{19] have conducted experiments on single jets impacting on flat plates
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without crossflows. Kotansky and Glaze [32] have investigated rectangular jet
impingement on a ground plane. Stewart and Kemmerly [50] have investigated single jet
impingement for a moving jet. Experiments done by Aoyagi and Schnyder [4] have
measured velocities using laser doppler velocimetry for a free jet issuing from a flat plate
into a free sweam. They also have conducted velocity measurements for a twin jet
configuration. Saripalli {44] has also conducted detailed velocity measurements using
laser doppler velocimetry for a twin jet configuration as well. Hall and Rogers (25), and
Bower et. al. {11] have conducted research investigating the recirculation of a twin jet

| configuration. Wohlbee et. al. [58] has investigated two and three jet model
configurations near the ground plane.

Most experimental techniques are limited in the amount and location of measured
data. Numerical methods used to model the flowfield around a V/STOL aircraft allow
the examination of a number of different physical quantities in most of the flowfield.
This allows a number of different configurations to be investigated quickly, as well as
giving a large number of points at which different parameters can be examined. Chawla
et. al [14] has done numerical calculations on the flowfield around a delta wing with
multiple impinging jets. VanOverbeke and Holdeman [53] have investigated the hot gas
environment and flowfield around the four jet, two inlet configuration used in this
experiment, for several forward speeds and model heights. Agarwal [1] has reviewed a
number of numerical methods for jet-induced aerodynamic effects on V/STOL aircraft.
The difficulty with using numerical techniques is that there are vex:y few experiments
which are able to verify the results of these numerical calculations.

Since large amounts of data are available from single and dual jet experiments,
most numerical comparisons are done using single jets in a crossflow, or dual jets without
crossflow in order to verify the numerical code. Barata et. al. [6] have done this for

single jets in a crossflow, using a k-epsilon trbulence model. Agarwal [2],[3] has
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investigated numerical tcchniqucs to model two dimensional jets issuing from a wing
using both Euler and Navier-Stokes solutions. Both Childs and Nixon [15], and Childs
and Patel [16] have conducted numerical investigations with a numerical code using the
Navier-Stokes equations, and have calculated the flow around both an impinging jet in
a crossflow, and a twin jet configuration. Both these models were compared to
experimental data from Saripalli [44].

Marker nephelometry, using a laser sheet to illuminate smoke particles in a
flowfield, and a camera to record the flowfield, has the potential to provide detailed
experimental measurements of smoke concentration easily. These data can be quantified
using analog-to-digital conversion, providing large amounts of data for comparison with
numerical results. In addition to being able to provide steady, time averaged smoke
concentration measurements in a flowfield, marker nephelometry also allows time-varying
flowfields to be recorded. Calculations of root-mean-squared concentration in the
flowfield can then give a quantitative measurement of the amount of unsteadiness and
turbulence in the flowfield. Becker [9] has given a detailed theoretical description of the
methods and problems of using this technique, as well as having conducted experiments
investigating single jets, both with and without swirl. Balint et. al. [8], Borleteau [10],
and Brandt [12] have all investigated free jets. Seal [46] has also investigated single free
jets, both with and without swirl. Morgan [39] and Dwenger [19] have also used this
technique to look at unsteady flows in an annular combustor. Mueller [40] and Veret [54)
have also use this technique to look at flows over stalled wings and blunt bodies. Johns
[28] has used this technique to investigate hot gas ingestion for an advanced STOVL
fighter aircraft. '

Marker nephelometry provides a great deal of information on smoke concentration
measurements in a flowfield. This information can be used for comparison with

numerical models of the same model configuration in order to verify the numerical code.
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The relative ease with which this technique can be used allows a number of
configurations to be quickly tested. Flowfield structures are also visible, allowing the
investigator to see what features may be causing certain acrodynamic effects on the test
model. This is in contrast to n_iost other experimental techniques, which are difficult, such
as laser doppler vclocimetry,. or only give limited amounts of information, such as force
balance measurements or thermocouple readings at the inlet, for instance. This thesis
provides comparisons between numerical and experimental results for a four jet, two inlet
V/STOL aircraft model, and documents the effects of free stream velocity and model

height on various flowfield features.
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3. EXPERIMENTAL APPARATUS AND METHOD

The experimental apparatus was designed to investigate the flowfield around a
generic V/STOL configuration in ground effect using a flow visualization technique
known as marker nephelometry. A secondary goal was to generate a data base of smoke
concentration profiles for comparison with numerically generated temperature profiles of
the same basic model configuration. The test model used in this experiment was based
on one used in a numerical study by Var?Ovcrbeke and Holdeman {53]. A direct
comparison between experimental smoke concentration profiles and numerical temperature
profiles done by Tafti and Vanka [52] on the same basic configuration was then possible.
A number of data sets at different forward velocities and model heights above the ground

were generated.

3.1 Experimental Method

A method of flow visualization known as marker nephelometry was used to view
the flowfield. Marker nephelometry is a technique used to detect concentrations of small
particles (markers) in a fluid using reflected or refracted light. The technique used in this
experiment is similar to one used by Borleteau {10), who uSed a laser sheet generated by
a cylindrical lens to view a freon jet